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Abstract

Scattering effects in images, including those related to

haze, fog and appearance of clouds, are fundamentally

dictated by microphysical characteristics of the scatterers.

This work defines and derives recovery of these character-

istics, in a three-dimensional (3D) heterogeneous medium.

Recovery is based on a novel tomography approach. Multi-

view (multi-angular) and multi-spectral data are linked to

the underlying microphysics using 3D radiative transfer, ac-

counting for multiple-scattering. Despite the nonlinearity of

the tomography model, inversion is enabled using a few ap-

proximations that we describe. As a case study, we focus on

passive remote sensing of the atmosphere, where scatterer

retrieval can benefit modeling and forecasting of weather,

climate and pollution.

1. Introduction

Until recently, 3D inverse problems in computer vision

tended to use simple forward models, such as blur (defocus,

motion), reflection (photometric stereo), and dehazing [33,

42] based on single-scattering [5,48,49]. Other imaging

communities use different simplified models. Specifically,

tomography in medical imaging and many other applica-

tions is based on linear models [19,21,38,51]. Scattering

is often considered a nuisance, thus attempts are made to

counter or ignore it. In contrast, in atmospheric and hydro-

logic remote sensing, multiple scattering is a major signal

source, and the dominant light source (Sun) is uncontrolled.

Multiple-scattering models [46] are used resulting in a non-

linear inversion. However, the model of the medium de-

generates to a plane parallel structure [30,36,39]: scatterers

vary essentially only in the 1D altitude [12,34].

With increasing computing power, previously intractable

problems may now be considered. Advances are made

in multiple reflections, non-line-of-sight imaging [4,29,47]

and multiple scattering [17,18,27,31,35]. In this line, this

work fits a 3D forward model involving arbitrary orders of

Figure 1. An instrument acquires multi-view images of a volu-

metric scattering medium. In each voxel, the scatterers have a

different size-distribution. The microphysical parameters of the

size-distribution, coupled with Mie theory, determine a voxel’s ef-

fective scattering characteristics, therefore affecting the acquired

images. Using these multi-view multi-spectral measurements we

recover spatial variations in the size-distribution parameters.

scattering, multiple viewpoints and spectral bands. We ap-

ply this approach to 3D atmospheric remote sensing, how-

ever, it could also find use in other fields such as computer

graphics, bio-medical imaging and material science.

Prior art has shown 3D scattering tomography of optical

parameters [17,18], however, it does not retrieve the phys-

ical properties of the scattering particles. The particles are

the crux, scientifically. Their microphysical parameters di-

rectly relate to physical, chemical and even biological pro-

cesses in the medium. For example, in the atmosphere, mi-

crophysical properties of particles dictate pollution, cloud

formation and climate changes [9,45].

This paper seeks to recover these fundamental parame-
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ters, in 3D, using multiview multiband images (Fig. 1). To

achieve this, we generalize the mathematical approach of

scattering tomography in several ways. First, we general-

ize the forward and inverse models, so that they explicitly

and directly relate to the microphysical parameters, hence

retrieving them in 3D. Second, we generalize the 3D for-

ward and inverse models to include multi-spectral data, to

enhance sensitivity to the microphysics.

We apply our approach to remote-sensing of clouds,

for which the scatterer material is known, retrieving size-

distribution parameters only. We conclude with a possible

road-map, to include retrieval of an unknown refractive in-

dex, e.g. for remote sensing and discrimination of smoke

and dust plumes.

2. Background

This section describes a microphysical parameterization

of a scattering medium and the connection between micro-

physics and the image formation (forward) model .

2.1. Scatterer Microphysics

Microphysical properties of scatterers are parameterized

by a vector ν. For spherical scatterers, a common pa-

rameterization [22] expresses the number density distribu-

tion, n(r|ν), of particles of radius r (Fig. 1). Let N, re, ve
be the total number concentration, effective radius and the

dimensional-less variance defined [22] as

N =

∫

n(r|ν)dr, re =

∫

(πr2)rn(r|ν)dr
∫

(πr2)n(r|ν)dr
, (1)

ve =

∫

(r−re)
2
(πr2)n(r|ν)dr

r2e
∫

(πr2)n(r|ν)dr
. (2)

Assume the scattering particles are of the same type, having

a known complex refractive index m (Sec. 9 discusses re-

trieval of m). Thus, ν=[N, re, ve]. Cloud water droplets

have good empirical agreement [22] with the Gamma-

distribution (Fig. 2):

n(r|ν)=NCr(v
−1

e
−3) exp[−r/(reve)], (3)

where C=(reve)
(2−v−1

e
)/Γ(v−1

e −2) is a normalization con-

stant. An important bulk characteristic is the mass content

defined as

M =
4

3
πρ

∫

r

r3n(r|ν)dr, (4)

where ρ is the particle density. For water ρw=1g/cm3 and

Mw is referred to as liquid water content.

2.2. Single Scattering

Consider an incident planewave of wavelength λ scat-

tered from a spherical particle of radius r. Scattering of ra-

ve = 0.1 ve = 0.01

r [µm]

n(r|ν)

Figure 2. Normalized (N=1) Gamma-distribution. A decrease in

effective variance shifts the peak toward larger values as well as

decreasing the overall width of the distribution.

IBC

J

line
of

sight

x0

ω
′

ω

θ

I (x,ω)

Figure 3. Light scatters in the medium, generally multiple times,

creating a scatter field J (Eq. 20). Integration yields the light field

I (Eq. 19). The angle between the two unit direction vectors ω,

ω
′ is θ. The boundary radiation is IBC and x0 is the intersection

point of the line-of-sight and the domain boundary.

diant intensity is described in terms of an interaction cross-

section [3] (extinction for a distribution of particles) and an-

gular scattering function. The scattering angle cosine, µ, is

defined in 3D as a product of unit direction vectors (Fig. 3)

ω and ω
′

µ = cos θ = ω·ω′. (5)

Define the size-parameter as

d = 2πr/λ. (6)

The Rayleigh model describes light scattering by particles

much smaller than wavelength, where d→0. For molecules

the interaction cross-section,1 σRayl, is approximately pro-

portional to λ−4. LetNRayl denote the number density. The

1For air, a mixture of molecules, the cross-section is an average quantity.
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molecular extinction [11] is

βRayl
λ = σRayl

λ NRayl. (7)

Expressing diversion of radiance from ω
′ to ω, the angular

scattering function is

fRayl
λ (µ) = σRayl

λ NRayl 3

16π
(1 + µ2). (8)

Rayleigh scattering by molecules is often compounded

by scattering from large particles. For spherical particles of

size comparable to λ, the Mie model applies. Mie theory

provides a link between microphysical and optical proper-

ties of a medium.2 In the following, we introduce the equa-

tions necessary to describe the interaction cross-section,

σMie
λ , and intensity scattering function fMie

λ . For a com-

prehensive analysis we refer the reader to [20], where the

notations used in this section are taken from.3

Denote spherical Bessel and Hankel Functions [1] of the

First Kind as jl(q) and hl(q) respectively. Here l∈N+, q∈C.

The Ricatti-Bessel functions are

Ψl(q)=qjl(q), ξl(q)=qh
(1)
l (q). (9)

Their respective derivatives are

Ψ′
l(q)=

d

dq
Ψl(q), ξ

′
l(q)=

d

dq
ξl(q). (10)

For radius r and complex refractive index m, Mie series

coefficients are

aλl (r|m)=
Ψl(d)Ψ

′
l(md)−mΨl(md)Ψ

′
l(d)

ξl(d)Ψ′
l(md)−mΨl(md)ξ′l(d)

, (11)

bλl (r|m)=
mΨl(d)Ψ

′
l(md)−Ψl(md)Ψ

′
l(d)

mξl(d)Ψ′
l(md)−Ψl(md)ξ′l(d)

, (12)

where d is defined in Eq. (6). Let P 1
l denote the Associated

Legendre Polynomial [1] of first order and degree l. Define

the angular functions

πl(µ)=
P 1
l (µ)

sin θ
, τl(µ)=

dP 1
l (µ)

dθ
. (13)

Using (11,12,13), define the amplitude scattering functions

Sλ
1 (µ, r|m)=

∞
∑

l=1

2l+1
l(l+1)

[

aλl πl(µ)+b
λ
l τl(µ)

]

, (14)

Sλ
2 (µ, r|m)=

∞
∑

l=1

2l+1
l(l+1)

[

aλl τl(µ)+b
λ
l πl(µ)

]

. (15)

With these definitions, the Mie intensity scattering function

(Fig. 4) and cross-section are given respectively by

fMie
λ (µ, r|m)=

λ2

8π2

[

∣

∣Sλ
1 (µ, r|m)

∣

∣

2
+
∣

∣Sλ
2 (µ, r|m)

∣

∣

2
]

, (16)

σMie
λ (r|m)=

λ2

2π

∞
∑

l=1

(2l+1)ℜ
{

aλl (r|m)+bλl (r|m)
}

, (17)

2Accurate for scatterers which are >λ apart [7].
3Notations slightly differ from those older texts such as [7].

Figure 4. Logarithm of fMie

λ (µ, r|m), normalized over θ, for

λ=660 nm. [Green, Blue] Single sphere Mie scattering.

[Red] Mie scattering by Gamma-distributed spheres. The size

integration smoothes-out high-frequency oscillations. [Black] A

Henyey-Greenstein function does not express the complexity of

Mie scattering.

where ℜ denotes the real part.

2.3. Multiple Scattering: Radiative Transfer

In highly scattering media, a diffusion model for radia-

tion scattering is applicable [6,40,41]. To avoid restriction

on scattering order, radiative transfer equations describe

transport of monochromatic radiation. Transmittance be-

tween points x1,x2 is given by

Tλ (x1,x2) = exp

[

−

∫

x2

x1

βλ(s)ds

]

. (18)

Here βλ(s) is the extinction coefficient at s, a running point

on the segment between x1 and x2. The extinction co-

efficient is comprised of molecular and particle extinction

(Eqs. 7,17).

Define x0 as the intersection of the boundary with a

ray originating at point x in direction −ω (Fig. 3). Let

IBC
λ (x0,ω) denote boundary radiation at x0,ω. The un-

polarized4 non-emissive forward model of radiative trans-

fer can be expressed by the following recursive equations,

per wavelength λ. They couple the radiance field Iλ to an

in-scatter field Jλ [8]

Iλ (x,ω) = IBC
λ (x0,ω)Tλ (x,x0) +

x0
∫

x

Jλ(x
′,ω)Tλ (x,x

′) dx′, (19)

Jλ (x,ω) =

∫

4π

fλ (x,ω·ω′) Iλ (x,ω
′) dω′. (20)

4For unpolarized sensors and source, polarized radiative transfer typically

affects results by .1% [23].
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In (20), fλ (x,ω·ω′) is the effective scattering function at

x which is comprised of both Rayleigh and Mie scattering

(Eq. 8,16).

3. Spectral-band Integration

Equations (19,20) should be spectrally integrated in a

wavelength band Λ. This integration weights the illumina-

tion spectrum and sensor sensitivity at λ∈Λ. Passive imag-

ing uses solar illumination, having approximately the spec-

trum B(λ) of a blackbody at temperature 5800◦K. For unit

sensor sensitivity within Λ, and knowing Iλ(x,ω) for a uni-

tary boundary illumination, we have

IΛ(x,ω) =

∫

λ∈Λ

Iλ(x,ω)B(λ)dλ, (21)

with analogous expressions for JΛ(x,ω). Simulated spec-

tral integration requires multiple renderings of (19) within

any spectral band. The numerical complexity is thus in-

creased. This increase is exacerbated when solving an in-

verse problem. We therefore use an approximation which is

commonly used in remote sensing as well as computer vi-

sion models. It is valid if wavelength dependencies within a

spectral band are weak. This condition is met when narrow

bands are considered, in the absence of molecular absorp-

tion.

Using Eqs. (16,17), define spectrally-averaged Mie opti-

cal quantities

σMie
Λ (r|m) =

1

Btot
Λ

∫

λ∈Λ

B(λ)σMie
λ (r|m)dλ, (22)

fMie
Λ (µ, r|m) =

1

Btot
Λ

∫

λ∈Λ

B(λ)fMie
λ (µ, r|m)dλ, (23)

where Btot
Λ is the total spectral radiance in Λ. Define

βΛ(ν) =

∫

n(r|ν)σMie
Λ (r|m)dr, (24)

fΛ(µ|ν) =

∫

n(r|ν)fMie
Λ (µ, r|m)dr, (25)

TΛ (x1,x2) = exp

[

−

∫

x2

x1

βΛ(s)ds

]

. (26)

An approximate band-integrated radiative transfer is given

by

ĪΛ (x,ω)=IBC
Λ (x0,ω)TΛ (x,x0) +

x0
∫

x

J̄Λ(x
′,ω)TΛ (x,x′) dx′, (27)

J̄Λ (x,ω)=

∫

4π

fΛ (x,ω·ω′) ĪΛ (x,ω′) dω′. (28)

Figure 5. Two test cases, optically thick and thinner cumu-

lus clouds, from an LES-generated cloud field. Rendered at

Λ=660±20 nm using Eq. (21). The clouds have maximum verti-

cal optical depth of ∼20 and ∼10.

The approximation ĪΛ is fast to compute. Computing ĪΛ
requires one call to a radiative transfer numerical solver. In

contrast, (21) requires multiple calls to a radiative transfer

numerical solver (one per λ). Let Nspectral denote the num-

ber of spectral bands measured. To quantify the approxima-

tion error we define

e = (1/Nspectral)
∑

Λ

‖MIΛ−MĪΛ‖1/‖MIΛ‖1. (29)

For clouds, this approximation is highly accu-

rate. We demonstrate the approximation (27,28)

by comparing renderings of a Large Eddy Simu-

lator [37] (LES) cloud field (Fig. 5). The bands

Λ= {445, 470, 550, 660, 865, 935}±20 nm yield an

error of eΛ<0.1%.

4. Recovery: Bias and Complexity

Inversion seeks recovery of a scatterer distribution, while

a forward model (rendering) is a radiative transfer model.

Rendering (26,27,28) depends on the voxel-dependent func-

tion fΛ(ω·ω′) and scalar βΛ both of which depend on

Λ. The function fΛ is expressed by at least two other

wavelength-dependent parameters: single scattering albedo

̟Λ and scattering anisotropy gΛ (first order angular mo-

ment of µ). A widely-used model, parameterized by gΛ,

is the Henyey-Greenstein model [17,18,24,27], however, it

fails to express the complexity of Mie scattering (Fig. 4).

Parameterizing the scattering function using ad-hoc phe-

nomenological parameters (̟Λ, gΛ) may bias the recov-

ery. Bias can be reduced using higher order angular

terms [16], resulting in a vector of parameters denoted

gΛ. Overall, the vector [βΛ, ̟Λ,gΛ] has Nparams ele-

ments. For Nvoxels voxels, the forward model (26,27,28)

apparently depends on NvoxelsNspectralNparams distinct

values. Hence, tomography that relies on forward model

(26,27,28) is a problem whose dimensionality scales as

O(NvoxelsNspectralNparams). This is inefficient, because

the phenomenological parameters are not independent

across wavelengths. All are derived from a few microphys-

ical properties of the scatterers. The microphysical proper-

ties are wavelength-independent (with the exception of re-

fractive index). Moreover, ignoring the inherent common
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denominator of all channels (microphysics), may result in a

less accurate recovery.

5. Microphysical Tomography

We dispose of multispectral phenomenological param-

eters βΛ, fΛ(ω·ω′), gΛ etc. Instead, we parameterize

the medium by its microphysical properties, ν, which are

wavelength-independent. With this parameterization, inver-

sion scales as O(NvoxelsNparams). Direct recovery of ν has

been done in 1D plane-parallel media [40,41,43]. We focus

on cases where m is known (Sec. 9 discusses a possible ex-

tension for unknown m). Tomography then seeks the size

distribution parameters ν(x)=[N(x), re(x), ve(x)] in 3D,

based on multiview projections of the scene [2].

Denote x̃ as voxel index. The microphysical vector at

this voxel is νx̃. Define indicator functions for the voxel’s

spatial support Vx̃ and solid angle Vω̃ as

1x̃(x)=

{

1 if x∈Vx̃
0 else

, 1ω̃(ω)=

{

1 if ω∈Vω̃
0 else

, (30)

respectively. The continuous microphysical and radiance

fields can be interpolated as5

ν(x) =
∑

x̃

νx̃1x̃(x), (31)

IΛ (x,ω) =
∑

x̃,ω̃

IΛ
x̃,ω̃1x̃(x)1ω̃(ω). (32)

Denote Ψ and I(Ψ) as vectors that respectively concate-

nate νx̃ and IΛ
x̃,ω̃ , across all voxels. The forward model

renders I(Ψ), given Ψ. Imaging is sampling of the ra-

diance field at specific locations, directions and spectral

bands. Sampling is modeled by an operator M, resulting

in a modeled vector of measurements ymodel
Ψ

=MI(Ψ). On

the other hand, an actual empirical system measures noisy

data, denoted by y. Using y, the inverse problem seeks to

recover an unknown medium Ψ. Generally, the solution

minimizes a cost function

Ψ̂ = argmin
Ψ

[D(y,ymodel
Ψ

) +R(Ψ)], (33)

where R is a regularization term that expresses prior knowl-

edge about Ψ, while D is a data (fidelity) term. The partic-

ular choice of R and D functionals affects the solution and

the minimization speed. Nevertheless, the core ability to

recover Ψ depends on the forward model.

The field Ψ has continuous-valued variables. Moreover,

rendering ymodel
Ψ

depends continuously and smoothly on Ψ.

Hence, for efficient minimization, the gradient with respect

to Ψ can be exploited. An easily differentiable term is

D(y,ymodel
Ψ

) = ‖y −MI(Ψ)‖22. (34)

5Often, more elaborate interpolation schemes are employed [14].

Then,

∂D

∂Ψ
=2 [MI(Ψ)−y]

⊤
M
∂I(Ψ)

∂Ψ
. (35)

Here (·)⊤ denotes transposition. The gradient (35) can en-

able an efficient solution to Eq. (33).

6. Functional Gradients

We express the functional gradients directly on the mi-

crophysical properties vector ν. For a given size distribu-

tion, n(r|ν), Eqs. (22,23) are integrated, yielding an effec-

tive extinction coefficient and scattering function in a voxel

βΛ(ν) = βRayl
Λ +

∫

n(r|ν)σMie
Λ (r|m)dr, (36)

fΛ(µ|ν) = fRayl
Λ (µ) +

∫

n(r|ν)fMie
Λ (µ, r|m)dr. (37)

In the atmosphere, with localized tornadoes as exception,

σRayl
λ and NRayl due to air molecules vary slowly in space

and time. They are mapped over Earth using long estab-

lished systems and are mainly a function of altitude. Three-

dimensional variations to derive are therefore attributed to

variations in ν. The gradients of (36,37) with respect to ν

are thus

∂

∂ν
βΛ(ν) =

∫

∂n(r|ν)

∂ν
σMie
Λ (r|m)dr, (38)

∂

∂ν
fΛ(µ|ν) =

∫

∂n(r|ν)

∂ν
fMie
Λ (µ, r|m)dr. (39)

For a Gamma-distribution (3), the derivatives with respect

to parameters (1,2) are:

∂n(r|ν)

∂N
=Cr(v

−1

e
−3) exp

(

−
r

reve

)

, (40)

∂n(r|ν)

∂re
=
r+2reve−re

r2eve
n(r|ν), (41)

∂n(r|ν)

∂ve
=
ψ( 1

ve

−2)−log r
reve

−1+2ve+rr
−1
e

v2e
n(r|ν). (42)

Here ψ=d log Γ(x)/dx is the digamma function. Equations

(40,41,42) are used to compute the integrals of (38,39). We

incorporate these functional gradients (Eqs. 38,39) into the

radiative transfer equations as follows. Define

∂

∂νx̃

TΛ (x1,x2)=−TΛ (x1,x2)

x2
∫

x1

∂βΛ(ν)

∂νx̃

1x̃(s)ds. (43)

Then, using (27,28), the coupled equations describing the

radiance approximate gradient with respect to ν are

∂

∂νx̃

ĪΛ (x,ω) = IBC
Λ (x0,ω)

∂

∂νx̃

TΛ(x,x0) +

x0
∫

x

[

∂J̄Λ(x
′,ω)

∂νx̃

TΛ(x,x
′)+J̄Λ(x

′,ω)
∂TΛ(x,x

′)

∂νx̃

]

dx′ (44)
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Figure 6. Recovery of microphysical parameters ν = {N, re, ve}. (a) Recovery of total number density, N , in 3D. [Bottom] Prior ap-

proach [35], assumes fixed microphysics, resulting in a recovery bias towards more droplets, due to a fixed smaller effective radius. (b)

Scatter plot of the recovered Mw. Color corresponds to altitude [km]. (c) Recovery of re as a function of altitude.

∂

∂νx̃

J̄Λ (x,ω)=

∫

4π

ĪΛ(x,ω
′)
∂fΛ(ω·ω′|ν)

∂νx̃

1x̃(x)dω
′

+

∫

4π

∂ĪΛ(x,ω)

∂νx̃

fΛ(x,ω·ω′)dω′. (45)

The coupling of Eqs. (44,45) makes the gradient com-

putation highly complex, requiring recursion. Starting

with an initial guess of ν
initial, a gradient-based update

(Eq. 35) is computed using an approximation that builds

upon Eqs. (44,45). The basic principle of the approxima-

tion ignores the second integral term in the gradient of J
(Eq. 45). This decouples the gradient of I from the gradi-

ent of J in the recursion of (44,45). See Ref. [35] for more

information about this approximation. This constitutes an

iterative algorithm for solving (33).

7. Numerical Simulation

The derived mathematical model and algorithm prin-

ciples can be applied to various scattering media. We

use liquid water clouds as a case-study, recovering the

droplet size distribution parameters (Eqs. 1,2). We sim-

ulate an atmosphere with molecular Rayleigh scattering

and a liquid water cloud. For realistic complexity, an

LES [10,37] generates a cloud field. In this field, N
varies on a 3D grid, re varies only with altitude [28],

while vtruee =0.1 is constant within the cloud (Fig. 6).

R=0.1‖∂zre‖
2. For computational speed we pre-compute

(37,36,38,39) for re∈[1, 25]µm and ve∈[0.05, 0.4] with

steps of ∆re≃0.25µm and ∆ve≃0.003.

For Mie computations (16,17) and microphysical inte-

gration (36,37), we rely on the publicly available code

of [15], which had been validated rigorously.6 A spheri-

cal harmonic discrete ordinate method (SHDOM) code [14]

renders measurements similar to those taken by the AirM-

SPI at 20m resolution [13]. The nine viewing zenith angles

are ±70.5◦, ±60◦, ±45.6◦, ±26.1◦, and 0◦, where ± in-

dicates forward/backward along a north-bound flight path.

Photon, quantization and dark noise are added according to

6https://i3rc.gsfc.nasa.gov/
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Figure 7. (a) AirMSPI sensor onboard NASA’s high altitude ER-2 aircraft, acquiring multiple views of a domain over the Pacific ocean [35].

(b) Volumetric recovery using real AirMSPI data. (c) Novel view point and wavelength rendering. (d) Corresponding AirMSPI acquired

image. Artifacts evident in the rendered view are partially due to errors in the rigid-body registration of the cloud movement.

AirMSPI parameters. The spectral bands Λ considered here

are those of AirMSPI.

We analyze an atmospheric volume with dimen-

sions of 0.64×0.72×20 km3 with cloud voxel size of

20×20×40m3. Pre-processing by space-carving [50] re-

duces the cloud domain that we seek to recover. For initial-

ization, we used constant values

N initial=0 cm−3, rinitiale =15µm, vinitiale =0.4. (46)

Convergence takes 100 iterations. The estimated effective

variance is v̂e=0.166. Recovery results for N , re, Mw

(Eq. 4) are shown in Fig. 6. Results are quantitatively as-

sessed by the retrieved Mw at every voxel. The relative av-

erage error and total mass errors [2] are respectively

ǫ=
‖Mtrue

w −Mretrieved
w ‖1

‖Mtrue
w ‖1

, δ=
‖Mtrue

w ‖1−‖Mretrieved
w ‖1

‖Mtrue
w ‖1

. (47)

The extinction βΛ(x) is transformed intoN(x) using (3,36)

N̂ =
β̂Λ − βRayl

Λ
∫

Ĉr(v̂
−1
e −3) exp (− r

r̂ev̂e
)σMie

Λ (r|m)dr
. (48)

Using (48), our method can be compared to a prior ap-

proach [35], which estimates βΛ(x), assuming fixed micro-

physics (46). For fixed rinitiale , vinitiale (Eq. 46), method [35]

yields ǫ=48%, δ=−55%. Leveraging our full micro-

physical optimization reduces the errors to ǫ=40% and

δ=−8%. A spatial distribution of the recovered parameters

is given in Fig. 6.

8. Real-World Data: AirMSPI

We apply this approach to real measurements, captured

outdoors from multiple remote views at several bands, using

AirMSPI [13]. AirMSPI signals had undergone extensive

geometric and radiometric calibration, thus enabling highly

accurate quantitative measurements [13].

Pre-processing: Clouds are segmented from the ocean

(Fig. 9). Non cloudy pixels are used to estimate the ocean

albedo per Λ. Cloudy pixels were used to estimate the cloud

velocity, ∼11m/s, and register the images (see Appendix).

3D recovery: A voxel resolution of 20×20×20m3is

used. Tomography is preformed using six of the eight spec-

tral bands of AirMSPI (Fig. 7). The estimated cloud water

mass is ∼1070 kg. To assess the recovery, we render the

cloud at an unused band, 380±16 nm.

9. Discussion

This work derives a mathematical framework for 3D to-

mography of scatterer microphysics. It uses multispectral

multi-view 3D data. We believe this principle can im-

pact various fields, including atmospheric science. The ap-

proach can be applied beyond remote sensing, in fields such

as computer graphics and bio-medical imaging, where the

model holds. This includes tissue, where incoherent scat-

tering applies [25].

The non-convexity of the forward model makes gradient-

based optimization (33-35) dependent on initial conditions.

Thus, recovery can be improved using more sophisticated

initializations and algorithms. Furthermore, recovery error

tends to grow with optical depth. This insight can lead to a

tailored regularization scheme.

The recovery error depends on the view and illumination

angles. For a fixed ve=0.1, we quantify angular and spectral

sensitivities of re∈
[

rmin
e , rmax

e

]

=[5, 25]µm

χre(θ,Λ) =

∫ rmax

e

rmin
e

∣

∣

∣

∣

∂fΛ(µ|ν)

∂re

∣

∣

∣

∣

dre. (49)

Figure 8 indicates high sensitivity in the forward peak (0◦),
rainbow and glory angles (140◦, 180◦) and circa 120◦ in

the UV. Forward peak sensitivity implies that incorporating

ground measurements [2,26,27,50] is informative for effec-

tive radius recovery.

In applications where the scattering particles’ material is

unknown, an optimization procedure for m is required. The

sought microphysical parameter vector is then generalized
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Figure 8. Spectral-angular sensitivity, log [χre(θ,Λ)]. Black

stripes indicate Airborne Multiangle SpectroPolarimetric Imager

(AirMSPI) spectral bands [13].

to ν=[N, re, ve,m] per x. Equations (38,39) become

∂

∂ν
βΛ(ν) =

∫

∂n

∂ν
σMie
Λ dr +

∫

n
∂σMie

Λ

∂ν
dr, (50)

∂

∂ν
fΛ(µ|ν) =

∫

∂n

∂ν
fMie
Λ dr +

∫

n
∂fMie

Λ

∂ν
dr. (51)

The dependency of (16,17,22,23) on ν is only through m

∂

∂m
σMie
Λ (r|m)=

1

Btot
Λ

∫

λ∈Λ

B(λ)
∂

∂m
σMie
λ (r|m)dλ, (52)

∂

∂m
fMie
Λ (µ, r|m)=

1

Btot
Λ

∫

λ∈Λ

B(λ)
∂

∂m
fMie
λ (µ, r|m)dλ, (53)

where

∂

∂m
σMie
λ (r|m)=

λ2

2π

∞
∑

l=1

(2l+1)ℜ

(

∂aλl
∂m

+
∂bλl
∂m

)

, (54)

∂

∂m
fMie
λ (µ, r|m)=

λ2

8π2

(

∂|Sλ
1 |

2

∂m
+
∂|Sλ

2 |
2

∂m

)

. (55)

The derivative of the modulus squared (Eq. 55) is given by

∂|Sλ
⋆ |

2

∂m
=2

[

ℜ(Sλ
⋆ )ℜ

(

∂Sλ
⋆

∂m

)

+ℑ(Sλ
⋆ )ℑ

(

∂Sλ
⋆

∂m

)]

, (56)

where ⋆=1, 2 and ℑ denotes the imaginary part. The depen-

dency of (14,15) on m is through the coefficients (11,12).

Derivatives are thus computed by linearly superposing the

derivatives of (11,12):

∂aλl (r|m)

∂m
=
zΨl(z)Ψ

′′
l (z)−zΨ

′2
l (z)−Ψl(z)Ψ

′
l(z)

−i [ξl(d)Ψ′
l(z)−mξ

′
l(d)Ψl(z)]

2 (57)

∂bλl (r|m)

∂m
=
zΨl(z)Ψ

′′
l (z)−zΨ

′2
l (z)+Ψl(z)Ψ

′
l(z)

−i [ξl(d)Ψ′
l(z)−mξ

′
l(d)Ψl(z)]

2 (58)

where z=md. See Ref. [20] for complete derivations of Mie

derivatives and stable computation procedures.

o1

ℓ1
= o1

+ t
Ω1

o2

o3

linear path of
constant velocity

Figure 9. 3D registration process. A path of constant velocity min-

imizes the distance from COM lines {ℓk}
Nviews

k=1
.

Appendix : Registration

We describe the registration process used in Sec. 8. De-

note the number of views by Nviews. Let {o}
Nviews

k=1 denote

cloud radiance center of mass (COM) coordinates in each

image. Each image COM corresponds to a particular ray

in 3D, with direction vector Ωk. Points on the COM ray

(Fig. 9) are thus

ℓk = {ok + tΩk −∞ < t <∞} (59)

Define a point-to-line distance as

D(ℓk,x) = ‖ok−x− [(ok−x)·Ωk]Ωk‖
2 (60)

To estimate a constant velocity v of a cloud, one view serves

as a reference frame denoted by k=0. The cloud’s apparent

3D COM is xCOM. Let ∆k be the time difference between

frame k and the reference frame, for which ∆0=0. We es-

timate the 3D path of a moving COM by

{x̂COM, v̂} = argmin
x,v

Nviews
∑

k=1

D(ℓk,x+∆kv). (61)

To enable tomographic reconstruction, we register

each measured image to the moving reference frame

{x̂COM+∆kv̂}.
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